UOJ Logo

NOI.AC

#78. B 君的第一题

统计

B 君的第一题

【题目描述】

时间就是金钱,效率就是生命。

B 君手中有三种面值的币,三种面值均为正整数且可以表为 $pq, pr, qr$, 其中 $p, q, r$ 两两互质。

每种金币 B 君都有无数个。在不找零的情况下,仅凭这三种金币,有些物品他是无法准确支付的。

现在 B 君想知道在无法准确支付的物品中,最贵的价值是多少金币?

注意:输入数据保证存在 B 君无法准确支付的商品。

【输入格式】

三个正整数 $p, q, r$,它们之间用一个空格隔开,表示B 君手中金币的价值为 $pq$, $pr$, $qr$。

【输出格式】

一个正整数 $N$ ,表示不找零的情况下,B 君用手中的金币不能准确支付的最贵的物品的价值。

【样例输入】

2 3 5

【样例输出】

29

【样例解释】

B 君手中有面值为 6, 10, 15 的金币无数个,在不找零的前提下无法准确支付价值为 1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 17, 19, 23, 29 其中最贵的物品价值 为 29,比29 贵的物品都能买到,比如:

30 = 15 + 15
31 = 15 + 10 + 6
32 = 10 + 10 + 6 + 6
33 = 15 + 6 + 6 + 6

【数据规模与约定】

对于 $30%$ 的数据,满足 $2 \leq p, q, r \leq 10$。

对于 $60%$ 的数据,满足 $2 \leq p, q, r \leq 100$。

对于 $100%$ 的数据,满足 $2 \leq p, q, r \leq 1000000$。